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ABSTRACT 

For any vector ; = q +z2 ani expansion is derived for the 
product of a power hrN 

monic Y:( 8, f )  

of the angles (p,, rl) and ( g2, y2) 
simple differential equations; their solutions can be expressed in terms 

of hypergeometric functions of the variable , and the leading 
coefficients by means of Gaunt's coefficients or 3j-symbols. 

of its magnitude and a surface spherical har- 

of its polar angles in terms of spherical harmonics 

The radial factors satisfy 

2 
(r< /r,) 

A number 
of linear transformations and three-term recurrence relations between 

the radial function are derived; but in contrast to the case L = 0 

no generally valid# expressions symmetric in r1 and r2 could be 
found . 

By interpreting the terms operationally an expansion is derived 

for the product of YLM( 8 , y )  and an arbitrary function f(r) . The 
radial factors are expansions in derivatives of f(r ) ; for spherical 

waves they factorize into Bessel functions of r and r in agree- 

ment with the expansion by Friedman and Russek. 

> 
1 2 

The 3j-symbols are briefly discussed in an un-normalized form; the 
new coefficients are integers, satisfying i simple recurrence relation 
through which they can be arranged on a 5-dimensional generalization 

of Pascal's triangle. 
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A THEE-DIMENSIONAL ADDITION THEOREM FOR AR3TTKARY FUNCTIONS 

INVOLVING EXPANSIONS IN SPHERICAL HARMOYaECS 

1 e Pntroduct ion 

1 ID a 2receding pager (referrad t o  as  I) a gene ra l i za t ion  was 

derived of Laplace's expansion for t h e  inve r se  d i s t ance  between two 

po in t s  Q, and Q, s p e c i f i e d  by the  vec to r s  P, and rQ or  t h e  
& L 

sphe r i ca lLpo la r  ccord ina tes  (r19 9 19 'pl> a9d (i2> 8,, y2)  It was 

shown t h a t  i n  t h e  expansion for an a r b i t r a r y  power of t h e  d i s t ance  i n  

terms of Legendre polynomicals of (cos  OI2) 

t h e  r a d i a l  func t ions  R n e  
func t ions  of t h e  argument 

ope ra t iona l  i n t e r p r e t a t i o n  an add i t ion  theorem was obtained v a l i d  f o r  

can be expressed i n  terms of hypergeometric 

(r< /r>) 
2 , and by g iv ing  t h e  expressions an 

a r b i t r a r y  a n a l y t i c  func t ions  of [ P 2 - r11 
A more genera l  add i t ion  theorem would apply t o  func t ions  

H(s2 - y',) or H ( r  -E- F ) depending on t h e  d i r e c t i o n  a s  w e l l  a s  on 

t h e  magnitude of t h e  v e c t o r  argument, I n  Car tes ian  coordinates  such an 

expansion i s  given by Taylor 's  theorem i n  t h r e e  v a r i a b l e s ;  i n  many 

phys ica l  app l i ca t ions ,  however, it i s  of advantage t o  spec i fy  t h e  

dependence on t h e  angles  i n  terms of s p h e r i c a l  harmonics. These har-  

monics can be def ined i n  seve ra l  ways in terms of t h e  assoc ia ted  

Legendre func t ions  5 *(x) 

42 -1 

(2) 

The most asefv.1 d e f i n i t i o n s  are for t h e  un-normalized harmonics 

R. A. Sack, kUnive r s i ty  of Wisconsin, Report WE-TCI-20 .  1 
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The functions 5 (cos Dl2) in (1) can be written as 

2 with corresponding expressions in terms of @ or Y (cf. B 3.11.2)  . 
-3The purpose of the present paper is to derive the expansion for the 

product of a spherical harmonic and a power of the radius 

and its generalization for functions of the type f(r)JLM( 0, I)  . 
contrast to I, the vector r = (r, @, 4p)  denotes the of 

In 

and 21 Y 

differ (cr2 - 51) 22 ; the corresponding expressions for the difference 
from those in (5) at most by a sign, corresponding to the parity of 
The spherical harmonics in (5) could equally well be expressed in terms 
of 0 or Y ; the corresponding radial functions R e  and % dif- 

41 ' 

fer from R s R  only by a factor which is easily calculated from a 
(2) and ( 3 ) .  In view of the transformation properties of the normalized 
functions Y their use would have the advantage that the azimuthal 

quantum numbers m = M , ml , m2 can affect the expressions 

Bateman Manuscript Project, A. Erdglyi ed. , Higher Transcendental 
Functions, (McGraw Hill, New York, 1953). Sections and formulas in 
this work will be referenced directly by the prefix B. 

2 
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% only through the Wigner coefficients or 3j-symbols 3y4'5n The 

writer's personal preference is for the functions fi , as they do 
not necessitate the use of square roots; the place of the 3j-symbols 

is then taken by un-normalized 3j-coefficients which have the advantage 

of being integers; as shown in the Appendix, they can be arranged on a 
5-dimensional generalization of Pascal's triangle. 

For some specific cases expansions of the type (5) have been given 
before; an addition theorem for solid spherical harmonics (N=L or 

N=-L-l) have been given by Rose' and for spherical waves by Friedman 

and Russek' ; more recently similar results have been re-derived by 

Seaton . The radial functions in the expansion (5) for the general 

case could be obtained by combining these results with those of I, i.e. 
by considering the product 

8 

but this would involve the summation of multiply infinite series. 

Instead, the derivation of the functions R for arbitrary values of 

N will be based, as in I, on the solution of the set of differential 
equations 

VLVNLM = (N-L) (N+L+1)VN_2,w 

- - - _ - -  
E. P. Wigner, Group Theory and Its Appl-cation to t..e Quantum 
Mechanics of Atomic Spectra (Academic Press, New York, 1959). 

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton 
University Press, Princeton, 1957). 

M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and 
Sons, Inc, New York, 1961). 

M. E. Rose, J. Maths. and Phys. 37, 215 (1958). 

B. Friedman and J. Russek, Quarterly Appl. Maths. 2, 13 (1954). 

4 

6 

M. E. Seaton, Proc. Phys. SOC. 77, 84 (1961). 
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These solutions are again expressible in terms of hypergeometric func- 

tions, and leading coefficients are determined by comparison with 

special known cases; it is found that these constants can always be 

expressed in terms of integrals of products of three harmonics which 

may be given in their normalized or un-normalized forms. 
method of deriving these coefficients could be based on the transforma- 

tion properties of the spherical harmonics, but neither this approach, 

nor any other group-theoretical arguments will be employed in this paper. 

The only use made of the extensive theory of normalized harmonics 

will be of the relation between the integrals over triple products 
(Gaunt's coefficients) 9y10 and the 3j-symbols, and the results obtained 

in terms of the functions fi 
normalized harmonics Y . 

An alternative 

3-5 

will be reformulated in terms of the 

The solutions of the equations (7) satisfying the appropriate 

continuity conditions will be derived in section 2, and the results 
discussed in section 3. A selected number of recurrence relations are 

given in section 4 ,  and in section 5 the formulas are given an opera- 

tional form applicable to arbitrary functions of r . 
case that one of the vectors points in the direction of the polar axis 
will be considered in a later paper. 

The special 

2 .  Mathematical Derivation 

To avoid an excessive use of subscripts, formulas in this section 

will be derived for the range r2 > rl only. The dimensionality of 

(5) requires that the functions R are of the form 

The differential equation (7a) substituted in (5) leads to 

J. A. Gaunt, Phil. Trans. Roy. SO~. A 228, 151 (1929). 

'OM. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, The 3-j 
and 6-j  symbols, Technology Press, MIT, Cambridge, Mass. (1959). 
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, (9) - a 2 R  + - -  2 a 2 R  - P , ( p , + l )  2 R = - + -  a 2 R  2 a R  R 

2 r 2 r2 
r 1 ar2 

2 r1 ar, 
arl 

which toge the r  wi th  (8) y i e l d s  the  recur rence  r e l a t i o n s  

The leading  term i n  t h e  power series ( 8 )  i s  of degree s = 0 s i n c e  

t h e  o t h e r  poss ib l e  so lu t ion ,  beginning wi th  

a s i n g u l a r i t y  as 

terms of Gauss' hypergeometric func t ion  

s = -2d-1 

As i n  I, t h e  s o l u t i o n  is bes t  expressed i n  

would lead t o  

r l+ 0 . 

11 where 

(d), = 1 ; ( O l ) ,  = ( a ; w )  = o((oc+1)***(o(.+w-1) = r(oc+w)/fl#). 
(12) 

I f  w e  abbrev ia t e  

A =  h ( L + ~ l + ~ 2 )  , a5 A - , a1 = A -  e, , X, = A - t 2  
(13) 

and use  n as def ined  i n  ( 6 ) ,  t he  s o l u t i o n  1 . (Q. and (10) can be 

expressed i n  t h e  form 

'I The a rcha ic  form (01  ;w) w i l l  be employed mainly when w c a r r i e s  
a s u b s c r i p t .  
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As t h e  functions -111" have t h e  p a r i t y  of 

(8,g') 3 (n-@,n+r) , K(n J - J ,  4,) can t a k e  non-zero values  only if 

4 on inversion,  

- I, - e 2  = even , 

and hence a l l  t h e  q u a n t i t i e s  def ined i n  (13) are i n t e g e r s .  

c o e f f i c i e n t s  K i n  (14 a, b) s a t i s f y  t h e  recurrence r e l a t i o n ,  i n  

view of (7b): 

The leading 

Th i s  means t h a t  K depends on n through t h e  f a c t o r s  

t h e  only other  way K could depend on n would be through an addi- 

t i ona l ,pe r iod ic , f ac to r  of per iod 2; but according t o  t h e  r e s u l t s  of 1 .  
n t h e  f a c t o r  r i n  (6) does not show any such p e r i o d i c i t y  and t h e  s o l i d  

harmonics a r e  independent of n ; hence (17) d e s c r i b e s  t h e  full depend- 

ence of K on n . To f i n d  t h e  abso lu te  value of K(N,!,m) w e  f i r s t  

consider  the case  N = L o r  n = 0. Making use of ( B  3.7:25) and i t s  

converse 

.yu 

t 2n  cos P ) e  = 2n . s F o s s +  i s i n f l c o s ( f ) - $ g  eimJ'dq 9 - 

w e  o b t a i n  f o r  t he  s o l i d  harmonics by means of t h e  binomial theorem 

2n hJ (zl+ixlcosJr+iy sinJr+z +ix2cos$+iy2sinJr) L e iMJr dJr 
2n L! 1 2 
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t he  sumk t o  be taken over a l l  

This  is t h e  un-normalized form of Rose’s add i t ion  theorem 6 . 
n t i o n  by r 

For p o s i t i v e  even n 

Mul t ip l ica-  

g ives  rise t o  terms f o r  which (20b) is  no longer s a t i s f i e d .  

equat ion  (19) of I shows t h a t  i n  t h e  expansion 
(1) for J r l  + r2In t h e  r a d i a l  c o e f f i c i e n t  of PI i s  1 !(rlr2) a / ( % ) A  

f o r  h = 4n 

R(I1+t2,(‘m) , i n  view of ( 6 ) ,  (13) and (19) i s  made up of terms 
and vanishes  f o r  a > bn . Hence t h e  lead ing  term i n  

a m  

P 

(21) 

The product 
3-5,9,12,13 

can be 

(22) 

This  leadinE; term can be found most 

lead ing  c o e f f i c i e n t s  of 

by a comparison of t h e  

view of (2) and Rodrigues’ P rn(x) , c 
formula (B 3.6.16) are 

The l ead ing  c o e f f i c i e n t  K i n  (14) f o r  

view of (21) and (22) 

= yl + f2 thus  becomes i n  

\ 
- - - - e -  \ \ 

L. Irrheld and T. E. Hull, Rev. Mod. 23, 21 (1951). 12 

I 
l3 E. A. Hylleraas ,  Math. Scand. l0, i \ 

I \ 
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( 2 4 )  

where the symbols U represent the sums 

provided (20a) holds. They are related to the Wigner 3j-symbols 3-5 

where, for this equation only, we have put 

In the present context these un-normalized 3j-symbols are required 

for integral values of l ,  m and a only, but, as shown in the 

Appendix, their definition (25) also covers the case of half-integer 
- . c  v 

parameters. For integer A they are invariant under a permutation 

of (1,$,3) in (26) and under a simultaneous change of sign of a11 the 
m .  
S 

The expression (24) can be simplified by the explicit use of Gaunt's 
for the integral over the product of three associated 9,lO coefficients 

Legendre functions. If we put 

where the azimuthal numbers add up to zero, these integrals can be 

expressed in terms of the U's as 9 



9 

so that (24) becomes 

Uring (17) uo ti& f o r  the leading coefficient for arbitrary N 

uhero 

1 in tho orpanrlon 

9 

(32) 
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izqs the functions 

n and a, hnction 
1 

h'ec precise sep 

any dependence on 4 or a only can be drawn i 

selection (33), (34) was chosen primarily to give 
rJ *I 

j t. I ,  d 

tions of Section 4 their'simplest form.' e of 9$pfqp 
Z t  c 

, . 1 5  

and the R' differ from the funcJio (1) and I only by a 
factor (k+k)-' . ,e $ 

< 

If the spherical harmonics %JI ( 5 )  bft''g+y~n in their normalized 
, h  * 

form Yc (3c), the analogous radial functions % can be factorized as 

in (32) 

is the integral of the product of three normalized harmonics taken over 

the whole unit sphere . 
the coefficients K' , and hence the radial functions R , will be 
non-zero only if the conditions 

10 In view of the properties of the 3j-symbols 

:;a ! a  
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are satisfied as well as (15) and (20a). The functions 'R will also 

vanish, in view of (13), (32) and (34), if 

L 5 N < tl+4 , n even (404 

(40b) 

The hypergeometric series are polynomials if 

N 2 (1+(2 , n even or Id> <-<-l , n odd ; (41) 

if either . .equality holds, they reduce to the leading term unity. The 

particular case N = L has been discussed in (19) and (20); if 

N = -L-1 , the only non-vanishing functions in ( 5 )  for r2 > rl 
those for which p2 = L + el , and for these we have, in view of (22) 
or from 

are 

9,11 

42(2L$!(2tl)!(~l+L)!(/l+L+ml-M)! 
= (-)M-ml (2tl+2L+1) !L! C1! (L-M) ! (Cl+ml) ! (42) 

so that ( 5 )  and ( 3 2 ) - ( 3 4 )  yield 

This corresponds to the expansion given by Rose for normalized 

"irregular" solid harmonics . 6 

As in I the transformation theory of the hypergeometric functions 
can be applied to the expression (34) for the functions R' . Thus 

(B 2.9.1,2) or eq. (20a) of I, leads to 
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which shows that the radial functions are also rational in 

r2 if 5(t1+e2+N) + 1 or +(t1-t2+N+1) 
Similarly (B 2.10.1) or (20b) of I yield 

r1 and 

are negative integers. 

2*'(-+n; 1 ) (5  i in;^) (2+n;~) 4 N - 4  r( 
R'(N, (;rl,r2) = 3 3 rl r2 

(1++n; A+u (2 ++n; 2 l~;(z +!in; A2) Y 

where the coefficients have been simplified in view of the properties 

of the gamma function, (B 1.2.6) and (B 1.3.15) or (23) and (25) of I. 
This equation shows the nature of the branch point as 

r2 ; the difficulties arising for integer values of 

discussed in I, following eq. (22); the result is either a polynomial 

r1 approaches 

n have been 

or a series involving logarithmic termsy In the case L = 0 , it was 
shown in I that by means of quadratic transformations applied to the 
hypergeometric functions the radial functions Rnr could be expressed 

in several forms symmetric in r and r2 , involving power series in 

can be applied whenever e, = e2 , regardless of the value of L ; for 
general values of el and e, (34) shows that even the leading 
coefficients are different as r < r or rl > r2 . In consequence 1 2  

1 
r r f(r +r I2 or in rlr2/fi12+r22) . The same transformations 1 2  1 2  
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it is unlikely that analogous simple symmetric expansions exist in the 

general case. On the other hand the leading coefficients in (45) are 

invariant for 

relations derived below, this suggests the existence of symmetric 

V r1 < r2 , and together with the symmetry of the recurrence 

expansions involving power series in the two arguments rlr2/(rl 2 2  +r2 ) 

2 2  2 2  and (rl -r2 )+1 +r2 ) or similar variables, though presumably involving 

the one variable only to a finite power depending on 

far the writer has been unable to derive such expansions. 

have recently been derived by Kuipers and MeulenbeldI4 in terms of 

generalized hypergeometric functions or MacRobert's E-functions, 

(cf. (B 4 )  and (B 5)). This generalization, however, is not quite 

relevant to the problem at this stage, as it corresponds to a generaliz- 

ation of the transformation from (27a) to (27b) of I, and not of the 
transformation from (19) to (27) a 

l(l-t21 So 

Quadratic transformations for arbitrary hypergeometric functions 

It might be considered that the expansion (5) would simplify if 
one of the vectors, say r1 , points in the direction of the polar 
axis; for this choice all the Legendre functions of 

according as ml = 0 or ml # 0 , and hence for all non-vanishing 
terms m2 = M . 
simpler than in the general case; on the other hand, because of the 

P ceases 1 restrictions imposed on r the rotational quantum number 

to be meaningful and any consistent expansion making use of this 

restriction should reasonable involve an implicit summation over ! 
i.e. over products involving 3j-symbols. From an analytic point of 

cos gl are 1 or 0, 

The individual terms in ( 5 )  are therefore considerably 

1 1 

1 '  

view these symbols are generalized hypergeometric series (cf. (B 4) and 9915) 

of unit argument and all integer parameters, and any expansion involving 

such functions is likely to lead back to functions of at least the same, 

and possibly higher, complexity. 

case, and in order not to complicate any further the mathematical 

This has indeed been found to be the: 

l4 L. Kuipers and B. Meulenbeld, J. London Math. SO~. - 35, 221 (1960). 

l5 P. E. Bryant, Tables of Wigner 3j-symbols, University of Southampton, 
Research Report 60-1 (1960). 
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= 0 w i l l  be 1 apparatus  required f o r  t h e  p re sen t  paper, t he  case 

considered s e p a r a t e l y  i n  a l a t e r  pub l i ca t ion .  

4 .  Recurrence Relat ions 

The r e l a t i o n s  between contiguous hypergeometric func t ions  

( B  2.8.28-45) can be used, as i n  I, t o  d e r i v e  l i n e a r  recurrence r e l a t i o n s  

between any t h r e e  r a d i a l  funct ions Re 
d i f f e r  by i n t e g e r s  only; t h e  recurrence formulas between t h e  c o e f f i c i e n t s  

3-5,9,10 K' of (33) o r  (37) are known from t h e  theory of angular  momentum 

Equation (14a) shows t h a t  t h e  func t ions  F depend on R and L only 

through t h e i r  sum N ; according t o  (34) 

f o r  which L , 4, , e2 and %N 

It i s  t h e r e f o r e  s u f f i c i e n t  t o  d r i v e  any f u r t h e r  r e l a t i o n s  f o r  changing 

values  of the angular quantum numbers L , ! and e2 only,  leaving 1 

n = N-L = const 9 (47) 

t h e  value of N 

means of (46). I n  view of t h e  l a r g e r  number of independent parameters,  

t h e  number of recurrence r e l a t i o n s  f o r  even s m a l l  changes i n  

considerable;  w e  t h e r e f o r e  confine our a t t e n t i o n  t o  t h e  fol lowing s p e c i a l  

casest 

can then be increased o r  decreased i n  s t e p s  of 2 by 

4 w i l l  be 
Y 

(i) Between any two of t h e  t h r e e  func t ions  R' , none of 

t h e  numbers L 

(ii) 

p, and p2 d i f f e r  by more than u n i t y .  

One of t h e  angular  quantum numbers remains constant ,  

t h e  second v a r i e s  by a t  most u n i t y l  and t h e  t h i r d  by a t  most two u n i t s .  

There a r e  8 inequivalent  3-term recu r rence  r e l a t i o n s  of type (i) 

and 12 of type (ii); f o r  t h e  sake of b r e v i t y  only those  parameters 

w i l l  be ind ica t ed  which d i f f e r  from L , 4 e ., e.g.  

R'(L+,t1-) = R'(L+1, t l - l ,P2)  

vary according t o  (47). The formulas are: 

( c f .  B 2.9), and N i s  understood t o  
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3 2 2  (5 +%n+L)(r2 -rl, )R' = 

= ( ll + 4 +%n)r2R'(L+,P2+) - ( I  *+ 3 +%n)rlRt(L+,tl+) 

= (1 -l-4n)r2R'(L+,t2-) - ( A  +2+%n)r1R'(L+,t1+) 

( A  +2+b)r2R'(L+,t2+) - ( l-1-%n)rlR'(L+, t1-) 

= -($ +12+%n)r2R'(L+, f2-) f (Al+ 5 3 +%n)rlR'(L+, P 1-) ? 

(.)i+rkn+L)"R' = 



3 (L+n+2) (7 +%n+L)r2R' = 

The other 6 relations of the type (ii) are obtained by an inter- 
change of the subscripts 1 and 2 in (50)-(52). 

equations are invariant on interchanging (tl,rl) and (t2,r2:r their 

derivation is not symmetrical; thus (50) follows from (B 2.8.32,37), 
but the corresponding equations for varying e, 

Although the resulting 

from 

and from (k 2.9.1,2). 
and (49c,d) from (B 2.8.35,42); the remaining relations are derived 

from these by linear elimination, though to prove (51) the values of 

L in (48) and (49) must be lowered or raised. 

The equations (48a,b) follow from (B 2.8.38,43), 

It rphould be remembered in applying the recurrence relations 
(48)-(52) that they do not apply to the full radial functions B of 

(32) ; these latter will vanish whenever the triangular condition (39) 

is violated because of the factor KP in (33), whereas the factors 

R' will have perfectly well defined, usually non-zero, values in 

accordance with (46) regardless of the relative values of L , c, , 
and I ,  provided only (15) is satisfied. 

5. An Operational Expansion for Arbitrary Functions 

As in I the way in which the power N enters into the expressions 

(32x34) allows the functions R' (N9!;r17r2) 

operational form. For r2 > r the expressions differ according to 1 
the relative magnitudes of L and t2 
term in (34), which depends on N we have using (.1;2]*(14) 

to be expressed in 

For the factor in the general 

16 
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Hence any func t ion  f ( r )  

r we can expand, i n  analogy t o  (5), 

which can be represented as a power s e r i e s  i n  

(55) 

where IC' i s  given by (33), o r  by (37) i f  normalized su r face  harmonics 

are used. For t h e  r a d i a l  func t ions  we ob ta in  from (34) and (54) 

( f o r  t h e  double f a c t o r i a l s  s ee  (43) of I) where 

(r2 - 'd/dr2) can be put l a s t  
A l t e r n a t i v e l y  t h e  powers of t h e  ope ra to r  

w i t h  t h e  r e s u l t  
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The quadratic operators occurring in (57) and (58) can be factorized, but 

not expressed as squares; hence the operational factorization of 

in (48) of I in terms of Bessel functions of a differential operator 
does not appear to have a simple analogue in the general case. 

fc 

The expressions (56)-(58) factorize analytically if f is a 

spherical Bessel function 

in the usual notation, satisfying 

[d2/dr2 - L(L+l)!r2) pf(r)] = -k 2 rf(r) . 

I n  view of (B 7.2.44-46,52,53) and (B 7.11.5-13) we have 

so that (56) and (57) or (58) yield 

Substituting this into'(55) and making use of (33) or (37) we find an 
expansion equivalent to the expansion theorem for spherical waves 

derived by Friedman and Russek'; apparent discrepancies are due to the 

differing definitions of the spherical harmonics. 

Bessel functions the expressions corresponding to (62) become in view 
For modified spherical 

of (B 2.7.19-22) 
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It should be borne i n  mind t h a t  the a c t u a l  s i g n s  i n  t h e  expansion (55) 

are not n e c e s s a r i l y  those  given i n  (62) o r  (63) i n  view of t h e  changes 

i n  s i g n  occurr ing i n  (33) and (37) .  

The a l g e b r a i c  recurrence r e l a t i o n s  ( 4 8 ) - ( 5 2 )  are not  d i r e c t l y  

app l i cab le  t o  t h e  ope ra t iona l  expansion terms ( 5 5 ) - ( 5 8 )  ; it should,  

nevertheless ,  be p o s s i b l e  t o  de r ive  recurrence r e l a t i o n s  f o r  t h e  funct ions 

f ' ( 4 )  , i f  necessary involving more than t h r e e  terms. 

might lead t o  a considerable  s i m p l i f i c a t i o n  i n  t h e  eva lua t ion  of t h e  

r a d i a l  functions.  

Such r e l a t i o n s  
N 
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Appendix: The Un-Normalized 3j-symbols 

The theory of the Wignet 3j-symbols is well e~tablished~-~ and 

it may therefore their values have been extensively tabulated 

appear futile to return to the use of un-normalized harmonics and 

3j-symbols associated with these. However the use of integers has its 

advantages, compared with expressions involving square roots; and from 

this point of view the symbols U introduced in (25) may be found useful. 

Their definition is easily generalized to any set of integral or half- 

integral parameters (js5ms) ', provided m + m + m = 0 and all the 

(j +m ) 2 h -  j, + j2 + j s s  3 
relation (39) holds for the j's . Using the abbreviations (27) we define 

1 2 3 
as well as are integers and the triangular 

where 

G Z  2j, - m2 + m 3 s ml + 2m3 = -ml-2m2 (mod 2) (A2) 

and the sum is to be taken over all integral or half-integral values 

of /cc (depending on al) for which all the binomial coefficients are 
non-zero. The relation of these quantities to Wigner's normalized 
3 j -symbols 3-5 is given in (26); like the latter they are invariant 

under a cyclic permutation of (1, 2, 3) and are multiplied by (-) 

for a non-cyclic permutation or for the transformation 

the other hand the constant numerator in the sum (Al) destroys the 
Regge symmetries16 of the symbols under permutation of the triples 

2 A  

On 2- -m 
N 

Against this loss of symmetry, the definition (Al) has the advantage 

that all the terms in the sum are integers which even for J = 32 never 
~ 

2, = 0 ,9 the sum reduces to a 
9 exceed 10 . For j, = j2 + j3 , i.e. 

T. Regge, Nuovo Cimento l.0, 545 (1958). 16 

c 



In view of the property of the binomial coefficients 

the definition (Al) entails the recurrence formula 

(:: 1: iz ) = u(j19j2-:j’3-’) mlJm2’ Jm’3* - (’l>j2+,’3-’ ml, %+%,m3-% ) ¶ . (A51 

the equivalent formula for the normalized 3j-symbols has been given by 

Edmonds . Apart from signs, the relation (AS) is similar to that ob- 

taining in Pascal’s triangle; and since for 
of U are binomial coefficients, the whole set of coefficients U can 

be regarded as a five-dimensional generalization of Pascal’s triangle. 
The numbers can thus be generated by means of (A3) and (A5); for work 

with electronic computers this would appear more convenient than the 

more usual representation of the squares of the normalized symbols as 

products and ratios of powers of primes1°’15. 

sion of the symbols U will be given elsewhere. 

4 

j, = 0 the absolute values 

A more detailed discus- 


